TorsionNet206 is a high-accuracy molecular benchmark that evaluates the accuracy of predicting and ranking of dihedral energy profiles. The benchmark contains 206 subsets of 24 conformers each computed at the CCSD(T)/def2-TZVP level of theory. Mean absolute error (MAE) and root mean square error (RMSE) are shown in kcal/mol. See all TorsionNet206 results.
Name | Incomplete Subsets | Benchmarked By | ||||
---|---|---|---|---|---|---|
ωB97M-D3BJ/vDZP | 0.15 | 0.18 | 0.99 | 0.98 | C.W. | |
r²SCAN-D4/vDZP | 0.45 | 0.56 | 0.98 | 0.97 | C.W. | |
B97-D3BJ/vDZP | 0.41 | 0.51 | 0.98 | 0.97 | C.W. | |
B97-3c | 0.35 | 0.45 | 0.98 | 0.97 | C.W. | |
MACE-ANI-CC | 0.23 | 0.29 | 0.97 | 0.97 | 59 | Ari 2025-01-11 |
r²SCAN-3c | 0.42 | 0.54 | 0.97 | 0.97 | C.W. | |
AIMNet2 (ωB97M-D3, old) | 0.39 | 0.48 | 0.95 | 0.94 | Ari 2025-01-11 | |
AIMNet2 (ωB97M-D3, new) | 0.39 | 0.48 | 0.95 | 0.94 | Ari 2025-01-11 | |
B3LYP-D3BJ/6-31G(d) | 0.57 | 0.71 | 0.95 | 0.94 | C.W. | |
GFN2-xTB | 0.73 | 0.91 | 0.85 | 0.85 | C.W. | |
Orb-v2 | 1.15 | 1.43 | 0.78 | 0.81 | Ari 2025-01-11 | |
OMat24 eqV2-L | 1.49 | 1.85 | 0.77 | 0.81 | Ari 2025-01-11 | |
MACE-MP-0b2(Large)-D3BJ | 1.12 | 1.39 | 0.76 | 0.76 | Ari 2025-01-11 | |
MACE-MP-0b2(Large) | 1.15 | 1.43 | 0.74 | 0.75 | Ari 2025-01-11 | |
Orb-d3-v2 | 1.43 | 1.73 | 0.74 | 0.76 | Ari 2025-01-11 | |
Sage | 2.44 | 2.96 | 0.72 | 0.79 | 190 | C.W. |
SO3LR | 1.15 | 1.41 | 0.69 | 0.58 | 184 | Ari 2025-01-16 |